
OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 1

Accelerating sequential computer vision
algorithms using OpenMP and OpenCL on

commodity parallel hardware

10 April 2018

Copyright © 2001 – 2018 by

NHL Stenden Hogeschool and Van de Loosdrecht Machine Vision BV

All rights reserved

j.van.de.loosdrecht@nhl.nl, jaap@vdlmv.nl

27-8-2018 OpenMP and OpenCL 2

Overview

• Why go parallel ? *
• Introduction CPU and GPU architecture
• Speedup factor; Amdahl’s and Gustafson’s law *
• Survey of 22 standards for parallel programming
• Classification of low level image operators *
• OpenMP
• OpenCL
• Implementation examples
• Evaluation choice for OpenMP and OpenCL
• Future work *
• Summary and conclusions

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 2

27-8-2018 OpenMP and OpenCL 3

Overview

• Introduction CPU and GPU architecture
• Survey of 22 standards for parallel programming
• OpenMP
• OpenCL
• Implementation examples
• Evaluation choice for OpenMP and OpenCL
• Summary and preliminary conclusions

Why go parallel?

Motivation:

• From 2004 onwards the clock frequency of CPUs has not
increased significantly

• Computer Vision applications have an increasing demand for
more processing power

• The only way to get more performance is to go for parallel
programming

Apply parallel programming techniques to meet the challenges
posed in computer vision by the limits of sequential architectures

27-8-2018 OpenMP and OpenCL 4

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 3

Parallelizing VisionLab

Aims and objectives:

• Compare existing programming languages and environments
for parallel computing

• Choose one standard for Multi-core CPU programming and for
GPU programming

• Re-implement a number of standard and well-known
algorithms

• Compare performance to existing sequential implementation
of VisionLab

• Evaluate test results, benefits and costs of parallel approaches
to implementation of computer vision algorithms

27-8-2018 OpenMP and OpenCL 5

Related research

Other research projects:

• Quest for one domain specific algorithm to compare the best
sequential with best parallel implementation on a specific
hardware

• Framework for auto parallelisation or vectorization
In research, not yet generic applicable

This project is distinctive:

• Investigate how to speedup a Computer Vision library by
parallelizing the algorithms in an economical way and execute
them on multiple platforms

• 100.000 lines of ANSI C++ code

• Generic library

• Portability and vendor independency

• Variance in execution times

• Run time prediction if parallelization is beneficial
See lecture “Multi-core CPU processing in VisionLab”

27-8-2018 OpenMP and OpenCL 6

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 4

27-8-2018 OpenMP and OpenCL 7

Introduction CPU and GPU architecture

Observations:

• The last years CPUs do not much become faster than
about 4 GHz

• Multi-core CPU PCs are now widely available at low costs

• Graphics cards (GPUs) have much more computing power
than CPUs and are available at low costs

“The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software” Sutter (2005) predicted that the only
way to get more processing power in the future, is to go for
parallel programming, and that it is not going to be an easy way

Floating point operations per second comparison between
CPU and GPU

27-8-2018 OpenMP and OpenCL 8

After OpenCL programming guide for CUDA architecture, NVIDIA, 2010

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 5

Bandwidth comparison between CPU and GPU

27-8-2018 OpenMP and OpenCL 9

After OpenCL programming guide for CUDA architecture, NVIDIA, 2010

Floating point operations per second comparison between
CPU and GPU

27-8-2018 OpenMP and OpenCL 10

After The Heterogeneous System architecture its (not) all about the GPU, Blinzer, P., 2014

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 6

GPU vs CPU

27-8-2018 OpenMP and OpenCL 11

Flynn's taxonomy

• Single Instruction, Single Data stream (SISD)

• Single Instruction, Multiple Data stream (SIMD)

• Multiple Instruction, Single Data stream (MISD)

• Multiple Instruction, Multiple Data stream (MIMD)

Wavefront array architectures (GPUs) are a specialization of SIMD

27-8-2018 OpenMP and OpenCL 12

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 7

Flynn's taxonomy

27-8-2018 OpenMP and OpenCL 13

After en.wikipedia.org/wiki/Flynn's_taxonomy

Usage of transistors on chip

27-8-2018 OpenMP and OpenCL 14

After OpenCL programming guide for CUDA architecture, NVIDIA, 2010

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 8

CPU architecture

Designed for a wide variety of applications and to provide fast
response times to a single task

• Multi-core MIMD architecture with

• Branch prediction

• Out-of-order execution

• Super-scalar

• Each core SIMD vector processor

• Complex hierarchy of cache memory with cache coherence

• Restricted by thermal envelope

27-8-2018 OpenMP and OpenCL 15

GPU architecture

Designed for throughput

• Device architecture

• GPU memory hierarchy

• Warps or wavefronts

• Coalesced memory access of global memory *

• Bank conflicts in accessing local memory *

27-8-2018 OpenMP and OpenCL 16

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 9

Host and device

27-8-2018 OpenMP and OpenCL 17

After The OpenCL Specification V1.1, A. Munshi, 2011

Device architecture (OpenCL)

27-8-2018 OpenMP and OpenCL 18

After The OpenCL Specification V1.1, A. Munshi, 2011

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 10

GPU memory hierarchy

Compute device memory

• Accessible by all processor elements

• Largest memory

• Slowest access time

• Divided into a global memory part with read/write access and a
constant memory part with only read access

Local memory

• Only accessible by the processor elements in a compute unit

• Available in lesser quantities than compute global memory but in
larger quantity than private memory

• Faster access time than global memory but slower than private
memory

Private memory

• Only accessible by one processor element

• Available only in very limited quantity

• Fastest access time

27-8-2018 OpenMP and OpenCL 19

GPU architecture example

AMD R9 290

• 40 compute units with each 4 processor elements

• Each processor element is a 16-way SIMD like vector
processor

• One compute unit = 4 x 16 = 64 sub-processors

• 40 compute units = 2560 sub-processors

• Running at 950 Mhz, a peak performance of 4.9 TFlops.

• 4 GByte global memory, peak bandwidth of 320 GBytes/s

• 64 KByte local memory for each compute unit

• 64 KByte private memory for each processor element

27-8-2018 OpenMP and OpenCL 20

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 11

Warps or wavefronts

• Work-items are organised in workgroups

• Work-items in a workgroup are organized in warps

• A work-item has

• Global id

• Workgroup id

• Local id

27-8-2018 OpenMP and OpenCL 21

NDRange, Work-Groups and Wavefronts

27-8-2018 OpenMP and OpenCL 22

After AMD Accelerated Parallel Processing

OpenCL Programming GuideAMD, 2011

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 12

Warps or wavefronts

• All work-items in a warp execute the same instruction in
parallel on all cores of a compute unit in SIMT fashion

• Single Instruction Multiple Thread (SIMT): vector components
are considered as individual threads that can branch
independently

• Typical size for a warp is 16, 32 or 64 work-items

• Branch divergence

27-8-2018 OpenMP and OpenCL 23

Branch divergence

27-8-2018 OpenMP and OpenCL 24

After Optimizing CUDA Applications, van Oosten, J., 2011

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 13

Warps or wavefronts

• All work-items in a warp execute the same instruction in
parallel on all cores of a compute unit in SIMT fashion

• Single Instruction Multiple Thread (SIMT): vector components
are considered as individual threads that can branch
independently

• Typical size for a warp is 16, 32 or 64 work-items

• Branch divergence

• Occupancy rate
Hide long global memory latency

• Zero-overhead warp scheduling

27-8-2018 OpenMP and OpenCL 25

Non-coalesced memory access of global memory

27-8-2018 OpenMP and OpenCL 26

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 local work item id

Global memory

Example for warp with four work-items and chunk size = 4

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 14

Coalesced memory access of global memory

27-8-2018 OpenMP and OpenCL 27

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 local work item id

Global memory

Example for warp with four work-items and chunk size = 4

Bank conflicts in accessing local memory

In order to access fast local memory

• Divided in banks

• Dedicated channels

• Successive N words are assigned to successive banks

27-8-2018 OpenMP and OpenCL 28

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 15

Bank conflicts in accessing local memory

27-8-2018 OpenMP and OpenCL 29

After CUDA Tutorial, NVIDIA, 2008

Bank conflicts in accessing local memory

27-8-2018 OpenMP and OpenCL 30

After CUDA Tutorial, NVIDIA, 2008

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 16

HSA Roadmap

27-8-2018 OpenMP and OpenCL 31

After P. Rogers, AMD 2012

Speedup factor

T1 = execution time with one core

TN = execution time with N cores

Speedup factor = T1 / TN

P = time spent in the fraction of the program that can be parallelized

S = time spent in the serial fraction

27-8-2018 OpenMP and OpenCL 32

Example: if 80% of the code can be parallelized then the speedup <= 5

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 17

Amdahl’s law: speedup for 1024 cores

27-8-2018 OpenMP and OpenCL 33

After: Gustafson, Montry and Benner, 1988

Gustafson’s law

• More processors and memory: many problems are scaled with N

• Problem is scaled: in many cases S decreases

• Amdahl’s law: how fast a given serial program would run on a
parallel system

• Gustafson’s law: how long a given parallel program would run on
a sequential processor

27-8-2018 OpenMP and OpenCL 34

SNN
PS

NPS
Speedup Gustafson *)1(

*
−−=

+

+
=

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 18

Gustafson’s law: speedup for 1024 cores

27-8-2018 OpenMP and OpenCL 35

After: Gustafson, Montry and Benner, 1988

Heterogeneous architecture

Heterogeneous = combination of CPU and GPU

Example:

• 10% of code can not be parallelized

• 1 core needs 10 times as many resources to be 2 x faster

• SpeedupAmdahl with 100 simple cores
1 / (0.1 + 0.9/100) = 9.2

• SpeedupAmdahl with 90 simple cores and one 2 x faster core
1 / (0.1/2 + 0.9/90) = 16.7

After Asanovic et al., 2006

27-8-2018 OpenMP and OpenCL 36

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 19

Survey (2013) of 22 standards for parallel programming

Multi-core CPU:

• Array Building Blocks

• C++11 Threads

• Cilk Plus

• MCAPI

• MPI

• OpenMP

• Parallel Building Blocks

• Parallel Patterns Library

• Posix Threads

• PVM

• Thread Building Blocks

27-8-2018 OpenMP and OpenCL 37

GPU and heterogeneous programming:

• Accelerator

• CUDA

• C++ AMP

• Direct Compute

• HMPP Workbench

• Liquid Metal

• OpenACC

• OpenCL

• PGI Accelerator

• SaC

• Shader languages

Choice of standard for multi-core CPU programming

27-8-2018 OpenMP and OpenCL 38

Requirement

Standard

Industry

standard

Maturity Acceptance by

market

Future

developments

Vendor

independence

Portability Scalable to

ccNUMA

(optional)

Vector

capabilities

(optional)

Effort for

conversion

Array Building

Blocks

No Beta New,

not ranked

Good Poor Poor No Yes Huge

C++11

Threads

Yes Partly new New,

not ranked

Good Good Good No No Huge

Cilk Plus No Good Rank 6 Good Reasonable

No MSVC

Reasonable No Yes Low

MCAPI No Poor Not ranked Unknown Good Good Yes No Huge

MPI Yes Excellent Rank 7 Good Good Good Yes No Huge

OpenMP Yes Excellent Rank 1 Good Good Good Yes,

only GNU

No Low

Parallel

Patterns

Library

No Reasonable New,

not ranked

Good Poor

Only MSVC

Poor No No Huge

Posix Threads Yes Excellent Not ranked Poor Good Good No No Huge

Thread

Building

Blocks

No Good Rank 3 Good Reasonable Reasonable No No Huge

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 20

Choice of standard for GPU programming

27-8-2018 OpenMP and OpenCL 39

Requirement

Standard

Industry

standard

Maturity Acceptance by

market

Future

developments

Expected

familiarization

time

Hardware

vendor

independence

Software

vendor

independence

Portability Heterogeneous

C++ AMP No New Not ranked Unknown Medium Bad Bad Poor No

CUDA No Excellent Rank 5 Good High Reasonable Reasonable Bad No

Direct

Compute

No Poor Not ranked Unknown High Bad Bad Bad No

HMPP No Poor Not ranked Plan for open

standard

Medium Reasonable Bad Good Yes

OpenCL Yes Good Rank 2 Good High Good Good Good Yes

PGI

Accelerator No Reasonable Not ranked Unknown Medium Bad Bad Bad No

Acceptance by market

27-8-2018 OpenMP and OpenCL 40

After R, Bergman, AMD 2011

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 21

New developments

• CUDA less vendor/platform specific, but no industry standard

• Visual Studio C++ AMP, great tool but vendor specific

• Enhancement OpenCL kernel language, C++ like features like
classes and templates

• Altera Corporation OpenCL program for FPGAs

• OpenACC announced and products available

• OpenMP 4.0 with “directives for attached accelerators”
Portable OpenMP pragma style programming on multi-core CPUs and GPUs, utilize

vector capabilities of CPUs and GPUs

27-8-2018 OpenMP and OpenCL 41

Classification of low level image operators

Classification by Nicolescu and Jonker (2001) and Kiran, Anoop
and Kumar (2011)

27-8-2018 OpenMP and OpenCL 42

Class Example

Point operator Threshold

Global operator Histogram

Local neighbour operator Convolution

Connectivity based operator Label Blobs

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 22

Parallelizing a large generic computer vision library

Idea to parallelize large part of the library:

• One instance of each low level class is implemented and can
be used as skeleton to implement other instances of class

• Many high level operators are built on the low level operators

Other operators are special and need will need a dedicated
approach to parallelizing

27-8-2018 OpenMP and OpenCL 43

OpenMP

• Introduction

• Components

• Scheduling strategy *

• Memory model *

• Examples

See for standard: www.openmp.org

27-8-2018 OpenMP and OpenCL 44

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 23

OpenMP introduction

• An API that supports multi-platform shared memory
multiprocessing programming in C, C++ and Fortran

• Supports both data parallel and task parallel multiprocessing

• Fork-join programming model

27-8-2018 OpenMP and OpenCL 45

After Introduction to Parallel Computing, Barney, 2011

OpenMP example adding two vectors

const int SIZE = 1000;

double a[SIZE], b[SIZE], c[SIZE];

// code for initialising array b and c

#pragma omp parallel for

for (int j = 0; j < SIZE; j++) {

a[j] = b[j] + c[j];

} // for j

Assuming CPU has four cores, at executing time the next events will

happen:

• The master thread forks a team of three threads

• All four threads will execute in parallel one quarter of the for loop. The
first thread will execute the for loop for 0 <= j < 250, the second thread
will execute the for loop for
250 <= j < 500, etc

• When all threads have completed their work the threads will join

27-8-2018 Multi Core Processing in

VisionLab

46

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 24

OpenMP Components

OpenMP consists of three major components:

• Compiler directives

• Runtime functions and variables

• Environment variables

27-8-2018 OpenMP and OpenCL 47

OpenMP compiler directives

All compiler directives start with “#pragma omp”. There are
compiler directives for expressing the type of parallelism:

• For loop directive for data parallelism

• Parallel regions directive for task parallelism

• Single and master directives for sequential executing of code
in parallel constructs

There are also compiler directives for synchronisation primitives,
like:

• Atomic variables

• Barriers

• Critical sections

• Flushing (synchronizing) memory and caches between threads

27-8-2018 OpenMP and OpenCL 48

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 25

OpenMP runtime functions and variables

OpenMP has runtime functions for performing operations like:

• Locking

• Querying and setting the number of threads to be used in
parallel regions

• Time measurement

• Setting the scheduling strategy

With environment variables it is possible to modify the default
behaviour of OpenMP, like:

• Setting the maximal number of threads to be used in parallel
regions

• Setting the stack size for the threads

• Setting the scheduling strategy

27-8-2018 OpenMP and OpenCL 49

OpenMP scheduling strategy

• Static: iterations are divided into chunks of size chunk_size,
and the chunks are assigned to the threads in the team in a
round-robin fashion in the order of the thread number.

• Dynamic: iterations are distributed to threads in the team in
chunks as the threads request them. Each thread executes a
chunk of iterations, then requests another chunk, until no
chunks remain to be distributed .

• Guided: iterations are assigned to threads in the team in
chunks as the executing threads request them. Each thread
executes a chunk of iterations, then requests another chunk,
until no chunks remain to be assigned. The size of the chunk
decreases each time.

• Auto: decision regarding scheduling is delegated to the
compiler and/or runtime system.

27-8-2018 OpenMP and OpenCL 50

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 26

OpenMP memory model

The OpenMP API provides a relaxed-consistency, shared-memory
model:

• Each thread is allowed to have its own temporary view of the
memory. The memory model has relaxed-consistency because
a thread’s temporary view of memory is not required to be
consistent with memory at all times.

• A flush operation enforces consistency between the temporary
view and memory.

The flush operation:

• Can be specified using the flush directive

• Is implied at:

• A barrier region

• At entry to and exit from parallel and critical region

27-8-2018 OpenMP and OpenCL 51

Sequential Threshold

template <class OrdImageT, class PixelT>

void Threshold (OrdImageT &image, const PixelT low, const PixelT high) {

PixelT *pixelTab = image.GetFirstPixelPtr();

const int nrPixels = image.GetNrPixels();

for (int i = 0; i < nrPixels; i++) {

pixelTab[i] = ((pixelTab[i] >= low) && (pixelTab[i] <= high))

? OrdImageT::Object() : OrdImageT::BackGround();

} // for all pixels

} // Threshold

27-8-2018 OpenMP and OpenCL 52

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 27

OpenMP Threshold

template <class OrdImageT, class PixelT>

void Threshold (OrdImageT &image, const PixelT low, const PixelT high) {

PixelT *pixelTab = image.GetFirstPixelPtr();

int nrPixels = image.GetNrPixels();

#pragma omp parallel for

for (int i = 0; i < nrPixels; i++) {

pixelTab[i] = ((pixelTab[i] >= low) && (pixelTab[i] <= high))

? OrdImageT::Object() : OrdImageT::BackGround();

} // for all pixels

} // Threshold

27-8-2018 OpenMP and OpenCL 53

OpenMP Threshold speedup graph on i7 2600 (4 cores)

27-8-2018 OpenMP and OpenCL 54

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 28

Sequential Histogram

template <class IntImageT>

void Histogram0 (const IntImageT &image, const int hisSize, int *his) {

typedef typename IntImageT::PixelType PixelT;

memset(his, 0, hisSize * sizeof(int));

PixelT *pixelTab = image.GetFirstPixelPtr();

const int nrPixels = image.GetNrPixels();

for (int i = 0; i < nrPixels; i++) {

his[pixelTab[i]]++;

} // for i

} // Histogram0

27-8-2018 OpenMP and OpenCL 55

Parallel Histogram ??

template <class IntImageT>

void Histogram0 (const IntImageT &image, const int hisSize, int *his) {

typedef typename IntImageT::PixelType PixelT;

memset(his, 0, hisSize * sizeof(int));

PixelT *pixelTab = image.GetFirstPixelPtr();

const int nrPixels = image.GetNrPixels();

#pragma omp parallel for

for (int i = 0; i < nrPixels; i++) {

his[pixelTab[i]]++;

} // for i

} // Histogram0

27-8-2018 OpenMP and OpenCL 56

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 29

OpenMP Histogram

Pseudo code

• Clear global histogram

• Split image in N parts and do in parallel for each part

• Create and clear local histogram

• Calculate local histogram

• Add all local histograms to global histogram

27-8-2018 OpenMP and OpenCL 57

OpenMP Histogram

template <class IntImageT>

void Histogram0 (const IntImageT &image, const int hisSize, int *his) {

typedef typename IntImageT::PixelType PixelT;

memset(his, 0, hisSize * sizeof(int));

PixelT *pixelTab = image.GetFirstPixelPtr();

const int nrPixels = image.GetNrPixels();

#pragma omp parallel

{

int *localHis = new int[hisSize];

memset(localHis, 0, hisSize * sizeof(int));

#pragma omp for nowait

for (int i = 0; i < nrPixels; i++) {

localHis[pixelTab[i]]++;

} // for i

#pragma omp critical (CalcHistogram0)

{

for (int h = 0; h < hisSize; h++) {

his[h] += localHis[h];

} // for h

} // omp critical

delete [] localHis;

} // omp parallel

} // Histogram0

27-8-2018 OpenMP and OpenCL 58

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 30

OpenMP Histogram speedup graph on i7 2600 (4 cores)

27-8-2018 OpenMP and OpenCL 59

OpenMP Convolution speedup graph on i7 2600 (4 cores)

27-8-2018 OpenMP and OpenCL 60

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 31

OpenMP LabelBlobs speedup graph on i7 2600 (4 cores)

27-8-2018 OpenMP and OpenCL 61

OpenCL

• OpenCL architecture

• Platform model

• Execution model

• Memory model

• Programming model

• Kernel language

• Host API

• Examples

• Memory transfer *

See for standard: www.khronos.org/opencl

27-8-2018 OpenMP and OpenCL 62

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 32

OpenCL platform model

The model consists of a host connected to one or more OpenCL
devices. An OpenCL device is divided into one or more compute
units which are further divided into one or more processing
elements. Computations on a device occur within the processing
elements.

27-8-2018 OpenMP and OpenCL 63

After The OpenCL Specification V1.1, A. Munshi, 2011

OpenCL execution model

Execution of an OpenCL program occurs in two parts:

• Kernels that execute on one or more OpenCL devices

• A host program that executes on the host

27-8-2018 OpenMP and OpenCL 64

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 33

OpenCL execution model

When the kernel is submitted to the compute device for
computation an indexing space is defined

27-8-2018 OpenMP and OpenCL 65

NDRange, Work-Groups and Wavefronts

27-8-2018 OpenMP and OpenCL 66

After AMD Accelerated Parallel Processing

OpenCL Programming GuideAMD, 2011

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 34

OpenCL execution model

When the kernel is submitted to the compute device for
computation an indexing space is defined

An instance of the kernel, called work-item is created for each
index

• Work-item has a unique global ID

• Work-items are organized into work-groups

• All work-items of one work-group execute concurrently on the
processing elements of a single compute unit

• Work-group has a unique work-group ID

• Work-item has a unique local ID within a work-group

The indexing space is called NDRange (N-Dimensional Range)
OpenCL supports up to and including three dimensional indexing

27-8-2018 OpenMP and OpenCL 67

OpenCL execution model

The host program defines the context for the kernels and
manages their execution. The context includes:

• Devices

• Program objects (source and executables)

• Memory objects (buffers, images, queues and events)

• Kernels (OpenCL functions that run on devices)

The host places commands into the command-queue which are
then scheduled onto the devices within the context:

• Kernel execution commands: execute a kernel on the
processing elements of a device

• Memory commands: transfer data to, from, or between
memory objects

• Synchronization commands: constrain the order of execution
of commands

27-8-2018 OpenMP and OpenCL 68

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 35

OpenCL execution model

27-8-2018 OpenMP and OpenCL 69

After OpenCL A Standard platform for programming Heterogeneous parallel computers,

Mattson et al, 2009

OpenCL memory model

27-8-2018 OpenMP and OpenCL 70

After The OpenCL Specification V1.1, A. Munshi, 2011

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 36

OpenCL memory model

• Global Memory: permits read/write access to all work-items in
all work-groups

• Constant Memory: global memory initialized by host that
remains constant during the execution of a kernel

• Local Memory: memory local to a work-group, variables are
shared by all work-items in that work-group

• Private Memory: memory private to a work-item

27-8-2018 OpenMP and OpenCL 71

OpenCL programming model

Programming models

• Supports data parallel and task parallel

• Primary model driving the design is data parallel

Synchronization

• In kernels

• Work-items in a single work-group using a barrier

• No mechanism for synchronization between work-groups

• Using host API

• Command-queue barrier, commands enqueued to
command-queue(s) in a single context

• Using events

27-8-2018 OpenMP and OpenCL 72

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 37

OpenCL kernel language

Subset of ISO C99 with extensions

• No function pointers, recursion, bit fields, variable-length
arrays and standard C99 header files

• Extensions: vector types, synchronization, functions to work
with work-items/groups, etc

• Announced OpenCL 2.1: subset of C++14

Kernel for adding of two vectors:

kernel void VecAdd (global int* c, global int* a, global int* b) {

unsigned int n = get_global_id(0);

c[n] = a[n] + b[n];

}

27-8-2018 OpenMP and OpenCL 73

OpenCL Host API

For adding of two vectors (67 C statements, without error checking code)

• Allocate space for vectors and initialize

• Discover and initialize OpenCL platform

• Discover and initialize compute device

• Create a context

• Create a command queue

• Create device buffers

• Create and compile the program

• Create the kernel

• Set the kernel arguments

• Configure the NDRange

• Write host data to device buffers

• Enqueue the kernel for execution

• Read the output buffer back to the host

• Verify result

• Release OpenCL and host resources

27-8-2018 OpenMP and OpenCL 74

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 38

OpenCL Threshold kernel
One pixel or vector of pixels per kernel

kernel void Threshold (global ImageT* image, const PixelT low,

const PixelT high) {

const PixelT object = 1;

const PixelT background = 0;

const unsigned int i = get_global_id(0);

image[i] = ((image[i] >= low) && (image[i] <= high)) ?

object : background;

} // Threshold

“Poor man’s” template for Int16Image:

• ImageT = short, short4, short8 or short16

• PixelT = short

27-8-2018 OpenMP and OpenCL 75

OpenCL Threshold host side VisionLab script

CL_Init NVIDIA GPU

$contextId = CL_CreateContext 0 (0)

$qId = CL_CreateQueue $contextId 0 OutOfOrderDisabled ProfilingDisabled

$zrc = VarFromFile threshold.cl

$programId = CL_CreateProgram $contextId &$zrc

$bufId = CL_CreateBuffer $contextId ReadWrite ImageBuffer par

$options = "-DPixelT=short -DImageT=short"

CL_Build $programId &$options

CL_AddKernel $programId Threshold

CL_SetArg Threshold 0 Buffer $bufId

CL_SetArg Threshold 1 Short $low

CL_SetArg Threshold 2 Short $high

CL_WriteBuffer $qId $bufId par () () Wait

CL_Run $qId Threshold () ($nrPixels) () () () Wait

CL_ReadBuffer $qId $bufId par () () Wait

27-8-2018 OpenMP and OpenCL 76

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 39

OpenCL development in VisionLab

OpenCL development in VisionLab

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 40

OpenCL Threshold GPU speedup graph (GTX 560 Ti)
One pixel or vector of pixels per kernel

27-8-2018 OpenMP and OpenCL 79

OpenCL Threshold CPU speedup graph (i7 2600)
One pixel or vector of pixels per kernel

27-8-2018 OpenMP and OpenCL 80

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 41

OpenCL Threshold kernel
Chunk of pixels or vectors of pixels per kernel

kernel void ThresholdChunk (

global ImageT* image,

const PixelT low, const PixelT high,

const unsigned int size) {

const PixelT object = 1;

const PixelT background = 0;

unsigned int i = get_global_id(0) * size;

const unsigned int last = i + size;

for (; i < last; i++) {

image[i] = ((image[i] >= low) && (image[i] <= high)) ?

object : background;

} // for i

} // ThresholdChunck

27-8-2018 OpenMP and OpenCL 81

Non-coalesced memory access of global memory

27-8-2018 OpenMP and OpenCL 82

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 local work item id

Global memory

Example for warp with four work-items and chunk size = 4

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 42

Coalesced memory access of global memory

27-8-2018 OpenMP and OpenCL 83

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 local work item id

Global memory

Example for warp with four work-items and chunk size = 4

OpenCL Threshold kernel
One pixel or vector of pixels per kernel with coalesced access

kernel void ThresholdCoalChunk (global ImageT* image,

const PixelT low, const PixelT high,

const unsigned int size) {

const PixelT object = 1;

const PixelT background = 0;

const unsigned int gid = get_group_id(0);

const unsigned int lid = get_local_id(0);

const unsigned int ws = get_local_size(0);

unsigned int i = (gid * ws * size) + lid;

const unsigned int last = i + size * ws;

for (; i < last; i += ws) {

image[i] = ((image[i] >= low) && (image[i] <= high)) ?

object : background;

} // for i

} // ThresholdCoalChunk

27-8-2018 OpenMP and OpenCL 84

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 43

OpenCL Threshold GPU speedup graph (GTX 560 Ti)
Chunk of pixels or vectors of pixels per kernel

27-8-2018 OpenMP and OpenCL 85

OpenCL Threshold CPU speedup graph (i7 2600)
Chunk of pixels or vectors of pixels per kernel

27-8-2018 OpenMP and OpenCL 86

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 44

Threshold OpenMP versus OpenCL

27-8-2018 OpenMP and OpenCL 87

Device architecture (OpenCL)

27-8-2018 OpenMP and OpenCL 88

After The OpenCL Specification V1.1, A. Munshi, 2011

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 45

OpenCL Histogram

27-8-2018 OpenMP and OpenCL 89

After Gaster et al., 2012, chapter 9

OpenCL Histogram kernel (part 1)

kernel void HistogramKernel (const global short *image,

const uint nrPixels, const uint hisSize,

local int *localHis, global int *histogram) {

const uint globalId = get_global_id(0);

const uint localId = get_local_id(0);

const uint localSize = get_local_size(0);

const uint groupId = get_group_id(0);

const uint numGroups = get_num_groups(0);

// clear localHis

const uint maxThreads = MIN(hisSize, localSize);

const uint binsPerThread = hisSize / maxThreads;

uint i, idx;

if (localId < maxThreads) {

for (i = 0, idx = localId; i < binsPerThread;

i++, idx += maxThreads) {

localHis[idx] = 0;

}

}

barrier(CLK_LOCAL_MEM_FENCE);

27-8-2018 OpenMP and OpenCL 90

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 46

OpenCL Histogram kernel (part 2)

// calculate local histogram

const uint pixelsPerGroup = nrPixels / numGroups;

const uint pixelsPerThread = pixelsPerGroup / localSize;

const uint stride = localSize;

for (i = 0, idx = (groupId * pixelsPerGroup) + localId;

i < pixelsPerThread; i++, idx += stride) {

(void) atom_inc (&localHis[image[idx]]);

}

barrier(CLK_LOCAL_MEM_FENCE);

// copy local histogram to global

if (localId < maxThreads) {

for (i = 0, idx = localId; i < binsPerThread;

i++, idx += maxThreads) {

histogram[(groupId * hisSize) + idx] = localHis[idx];

}

}

} // HistogramKernel

27-8-2018 OpenMP and OpenCL 91

OpenCL Histogram Reduce kernel

kernel void ReduceKernel (const uint nrSubHis, const uint hisSize,

global int *histogram) {

const uint gid = get_global_id(0);

int bin = 0;

for (uint i=0; i < nrSubHis; i++)

bin += histogram[(i * hisSize) + gid];

histogram[gid] = bin;

} // ReduceKernel

27-8-2018 OpenMP and OpenCL 92

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 47

OpenCL Histogram speedup graph(GTX 560 Ti)

27-8-2018 OpenMP and OpenCL 93

OpenCL Histogram speedup graph(i7 2600)

27-8-2018 OpenMP and OpenCL 94

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 48

OpenCL Histogram GPU speedup graph (GTX 560 Ti)
Using multiple local histogram per work-group

27-8-2018 OpenMP and OpenCL 95

OpenCL Histogram GPU speedup graph (GTX 560 Ti)
with 16 local histograms

27-8-2018 OpenMP and OpenCL 96

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 49

OpenCL Histogram GPU speedup graph (GTX 560 Ti)
1 local histogram per work-group versus 16

27-8-2018 OpenMP and OpenCL 97

Optimized implementation for CPUs

• Each workgroup has only one work-item

• Number of workgroups is equal to the number of cores

• No race conditions for the local histogram, so no need for
expensive atomic increment operations

27-8-2018 OpenMP and OpenCL 98

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 50

OpenCL Histogram optimized for CPU (i7 2600)

27-8-2018 OpenMP and OpenCL 99

Histogram OpenCL versus OpenMP

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 51

OpenCL Convolution GPU speedup graph (GTX 560 Ti)

27-8-2018 OpenMP and OpenCL 101

OpenCL Convolution GPU speedup graph (GTX 560 Ti)

27-8-2018 OpenMP and OpenCL 102

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 52

Convolution 9x9: AMD FX9590 CPU (1 core) vs AMD R9 290X GPU

OpenCL LabelBlobs GPU speedup graph (GTX 560 Ti)

27-8-2018 OpenMP and OpenCL 104

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 53

Memory transfer

Memory transfers:

• Normal

• Pinned

• Zero copy (not available for testing)

Data transfers benchmarked:

• From CPU to GPU

• From GPU to CPU

27-8-2018 OpenMP and OpenCL 105

Data transfer from CPU to GPU (GTX 560 Ti)

27-8-2018 OpenMP and OpenCL 106

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 54

Data transfer from GPU to CPU (GTX 560 Ti)

27-8-2018 OpenMP and OpenCL 107

Overhead data transfer (in ms) is massive
for simple vision operators

27-8-2018 OpenMP and OpenCL 108

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 55

Evaluation choice for OpenMP

OpenMP is very well suited for parallelizing many algorithms of a
library in an economical way and execute them with an adequate
speedup on multiple parallel CPU platforms

• OpenMP easy to learn

• Mature and stable tools

• Very low effort embarrassingly parallel algorithms

• 170 operators parallelized

• Automatic operator parallelization

• Portability tested on quad core ARM running Linux

27-8-2018 OpenMP and OpenCL 109

Evaluation choice for OpenCL

OpenCL is not very well suitable for parallelizing all algorithms of
a whole library in an economical way and execute them effective
on multiple platforms

• Difficult to learn, new mindset needed

• Tools are “in development”

• Considerable effort embarrassingly parallel algorithms

• Non embarrassingly parallel algorithms need complete new
approaches

• Overhead host – device data transfer

• Considerable speedups possible

• Exploitation vector capabilities CPUs / GPUs

• Heterogeneous computing

• Portable but the performance is not portable

27-8-2018 OpenMP and OpenCL 110

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 56

Standard for GPU and heterogeneous programming

There is at the moment NO suitable standard for parallelizing all
algorithms of a whole library in an economical way and execute
them effective on multiple platforms

OpenCL is still the best choice in this domain

27-8-2018 OpenMP and OpenCL 111

Recommendations OpenCL

Use for accelerating dedicated algorithms on specific platforms:

• Considerable amount effort writing and optimizing code

• Algorithms are computational expensive

• Overhead data transfer must be relative small compared to
execution time of kernels

• Code optimized for one device or sub optimal speedup
acceptable if run on different similar devices

27-8-2018 OpenMP and OpenCL 112

OpenMP and OpenCL 27-Aug-18

Jaap van de Loosdrecht, VdLMV, jaap@vdlmv.nl 57

Future work

New development in standards

• C++ AMP

• OpenMP 4.0

Near future

• Parallelize more vision operators

More distant future

• Intelligent buffer management

• Automatic tuning of parameters

• Heterogeneous computing

27-8-2018 OpenMP and OpenCL 113

Summary and conclusions

• Choice made for standards OpenMP and OpenCL

• Integration OpenMP and OpenCL in VisionLab

• Benchmark environment

• OpenMP

• Embarrassingly parallel algorithms are easy to convert
with adequate speedup

• More than 170 operators parallelized

• Run time prediction implemented

• OpenCL

• “Not an easy road”

• Considerable speedups possible

• Scripting host side code accelerates development time

• Portable functionality

• Portable performance is not easy

27-8-2018 OpenMP and OpenCL 114

