OpenMP and OpenCL

NH o o /‘g’%\
STENDEN
Accelerating sequential computer vision

algorithms using OpenMP and OpenCL on
commodity parallel hardware

10 April 2018

Copyright © 2001 - 2018 by
NHL Stenden Hogeschool and Van de Loosdrecht Machine Vision BV
All rights reserved

j-van.de.loosdi nl, jaap .nl

Overview

Why go parallel ? *

Introduction CPU and GPU architecture
Speedup factor; Amdahl’s and Gustafson’s law *
Survey of 22 standards for parallel programming
Classification of low level image operators *
OpenMP

OpenCL

Implementation examples

Evaluation choice for OpenMP and OpenCL
Future work *

Summary and conclusions

27-8-2018 OpenMP and OpenCL 2

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

OpenMP and OpenCL 27-Aug-18

Overview

Introduction CPU and GPU architecture

Survey of 22 standards for parallel programming
OpenMP

OpenCL

Implementation examples

Evaluation choice for OpenMP and OpenCL
Summary and preliminary conclusions

27-8-2018 OpenMP and OpenCL 3

Why go parallel?

Motivation:

» From 2004 onwards the clock frequency of CPUs has not
increased significantly

« Computer Vision applications have an increasing demand for
more processing power

« The only way to get more performance is to go for parallel
programming

Apply parallel programming techniques to meet the challenges
posed in computer vision by the limits of sequential architectures

27-8-2018 OpenMP and OpenCL 4

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 2

OpenMP and OpenCL 27-Aug-18

Parallelizing VisionLab

Aims and objectives:

+ Compare existing programming languages and environments
for parallel computing

+ Choose one standard for Multi-core CPU programming and for
GPU programming

* Re-implement a number of standard and well-known
algorithms

+ Compare performance to existing sequential implementation
of VisionLab

« Evaluate test results, benefits and costs of parallel approaches
to implementation of computer vision algorithms

27-8-2018 OpenMP and OpenCL 5

Related research

Other research projects:

* Quest for one domain specific algorithm to compare the best
sequential with best parallel implementation on a specific
hardware

+ Framework for auto parallelisation or vectorization
In research, not yet generic applicable

This project is distinctive:

» Investigate how to speedup a Computer Vision library by
parallelizing the algorithms in an economical way and execute
them on multiple platforms

* 100.000 lines of ANSI C++ code

» Generic library

+ Portability and vendor independency
» Variance in execution times

* Run time prediction if parallelization is beneficial
See lecture “Multi-core CPU processing in VisionLab”

27-8-2018 OpenMP and OpenCL 6

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 3

OpenMP and OpenCL

Introduction CPU and GPU architecture

Observations:

“The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software” Sutter (2005) predicted that the only
way to get more processing power in the future, is to go for
parallel programming, and that it is not going to be an easy way

27-8-2018

The last years CPUs do not much become faster than
about 4 GHz

Multi-core CPU PCs are now widely available at low costs

Graphics cards (GPUs) have much more computing power
than CPUs and are available at low costs

OpenMP and OpenCL

27-8-2018

Floating point operations per second comparison between

CPU and GPU

Theoretical
GFLOP/s
1500

NVIDIA GPU Single Precision
1250 ==+=NVIDIA GPU Double Precision
==e==|ntel CPU Single Precision
Intel CPU Double Precision

1000

750

Tesla C2050
500

250 Westmere

Woodcrest

Pentiunt 4 i
Sep-01 Jan-03 Jun-04 Oct-05 Mar-07 Jul-08 Dec-09

After OpenCL programming guide for CUDA architecture, NVIDIA, 2010

OpenMP and OpenCL

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

OpenMP and OpenCL 27-Aug-18

Bandwidth comparison between CPU and GPU

Theoretical GB/s
200 -
180 —
-g=CPU
GPU

160 -+

140

120

100 -

80 -

60

f Westmere
40 +

3 Bloomfield
Woodcrest
2,] 2 Prescott
Harpertown

0 -Rorthwisod T ‘
2003 2004 2005 2006 2007 2008 2009 2010

After OpenCL programming guide for CUDA architecture, NVIDIA, 2010

27-8-2018 OpenMP and OpenCL 9

Floating point operations per second comparison between
CPU and GPU

CPU GFLOPS GPU GFLOPS

After The Heterogeneous System architecture its (not) all about the GPU, Blinzer, P., 2014

27-8-2018 OpenMP and OpenCL 10

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 5

OpenMP and OpenCL

GPU vs CPU

GPU vs CPU Performance Scaling

Jan04 Oct06 Jul09 Apr-12 Dec-14
Image Source: nvidia.com

27-8-2018 OpenMP and OpenCL

1

Flynn's taxonomy
+ Single Instruction, Single Data stream (SISD)
+ Single Instruction, Multiple Data stream (SIMD)
+ Multiple Instruction, Single Data stream (MISD)

* Multiple Instruction, Multiple Data stream (MIMD)

Wavefront array architectures (GPUs) are a specialization of SIMD

27-8-2018 OpenMP and OpenCL

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

OpenMP and OpenCL 27-Aug-18

Flynn's taxonomy

SISD MISD

SISD Instruction Pool MISD Instruction Pool

Data Pool
(]
Data Pool
[E]
2]

SIMD MIMD

SIMD Instruction Pool MIMD [Instruction Pool |

— i g
— ~pd-| -
— ~[Fa e
& ~pa- g

After en.wikipedia.org/wiki/Flynn's_taxonomy

Data Pool
Data Pool

27-8-2018 OpenMP and OpenCL 13

Usage of transistors on chip

Control ALU | ALU E}
ALU | ALY E}

CPU GPU

After OpenCL programming guide for CUDA architecture, NVIDIA, 2010

27-8-2018 OpenMP and OpenCL 14

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 7

OpenMP and OpenCL

CPU architecture

Designed for a wide variety of applications and to provide fast
response times to a single task

* Multi-core MIMD architecture with

« Branch prediction

+ Out-of-order execution

» Super-scalar

» Each core SIMD vector processor

+ Complex hierarchy of cache memory with cache coherence
* Restricted by thermal envelope

27-8-2018 OpenMP and OpenCL 15

GPU architecture

Designed for throughput

+ Device architecture

+ GPU memory hierarchy

+ Warps or wavefronts

+ Coalesced memory access of global memory *
« Bank conflicts in accessing local memory *

27-8-2018 OpenMP and OpenCL 16

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

OpenMP and OpenCL

27-Aug-18

Host and device

)2
s HWH Host

T

- ;
Camiputs Linit Compute Device

After The OpenCL Specification V1.1, A. Munshi, 2011

27-8-2018

OpenMP and OpenCL

Device architecture (OpenCL)

Compute Device

Compute unit 7 Compute unit N
Private Private Private Private
memory 7 memory M memory 1 memory
- I e I m I
| pEr | | Pem | [PE1 | [pEm |

Local
memory N

Global/Constant Memory Data Cache

Global Memory \

‘ Constant Memory ‘
Compute Device Memory

After The OpenCL Specification V1.1, A. Munshi, 2011
27-8-2018

OpenMP and OpenCL

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

OpenMP and OpenCL

GPU memory hierarchy

Compute device memory

+ Accessible by all processor elements
» Largest memory

+ Slowest access time

+ Divided into a global memory part with read/write access and a
constant memory part with only read access

Local memory
» Only accessible by the processor elements in a compute unit

+ Available in lesser quantities than compute global memory but in
larger quantity than private memory

» Faster access time than global memory but slower than private
memory

Private memory

» Only accessible by one processor element
+ Available only in very limited quantity

+ Fastest access time

27-8-2018 OpenMP and OpenCL

GPU architecture example

AMD R9 290
* 40 compute units with each 4 processor elements

« Each processor element is a 16-way SIMD like vector
processor

* One compute unit = 4 x 16 = 64 sub-processors

* 40 compute units = 2560 sub-processors

* Running at 950 Mhz, a peak performance of 4.9 TFlops.

* 4 GByte global memory, peak bandwidth of 320 GBytes/s
+ 64 KByte local memory for each compute unit

+ 64 KByte private memory for each processor element

27-8-2018 OpenMP and OpenCL

20

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

10

OpenMP and OpenCL 27-Aug-18

Warps or wavefronts

+ Work-items are organised in workgroups
+ Work-items in a workgroup are organized in warps
+ A work-item has

+ Global id

+ Workgroup id

* Local id

27-8-2018 OpenMP and OpenCL 21

NDRange, Work-Groups and Wavefronts

NDRange Work-Group

Global Domain = Work-Group Id = (B, B,)
get_global_size (0)

Wavefront ~Wavefront | - Wavefront

1 2
(Work-Group| |Work-Group| |Work-Group
1 2

o(1)

Wavefront | | Wavefront | ~Wavefront

get_group_size(l)
<«———WorkGroupSize G, ——»

| Work-Group| Work-Group| |Work-Group)

get_glabal_siz

Wavefront | ~Wavefiont | ~Wavefront
n

<«——— Global Domain, ———>

'Wavk—Gvuup | Work-Group| |Work-Group|
.

Get_group_size (0]
<«———Work-Group Size G: ———>

Wavefront
4 ¥
~ Work-Item Work-Item
W-ks =(0,0) | WHe=(6x-10)
globala= globalis=
(86, B"G)) (G +G1,B/G)
Work-tem Work-item
W-lis = (Ge1, Gy1)
** |gobale=
R
BGG1)

After AMD Accelerated Parallel Processing
OpenCL Programming GuideAMD, 2011

27-8-2018 OpenMP and OpenCL 22

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 11

OpenMP and OpenCL 27-Aug-18

Warps or wavefronts

« All work-items in a warp execute the same instruction in
parallel on all cores of a compute unit in SIMT fashion

» Single Instruction Multiple Thread (SIMT): vector components
are considered as individual threads that can branch
independently

+ Typical size for a warp is 16, 32 or 64 work-items
« Branch divergence

27-8-2018 OpenMP and OpenCL 23

Branch divergence

e T

After Optimizing CUDA Applications, van Oosten, J., 2011

27-8-2018 OpenMP and OpenCL 24

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 12

OpenMP and OpenCL 27-Aug-18

Warps or wavefronts

« All work-items in a warp execute the same instruction in
parallel on all cores of a compute unit in SIMT fashion

+ Single Instruction Multiple Thread (SIMT): vector components
are considered as individual threads that can branch
independently

« Typical size for a warp is 16, 32 or 64 work-items
« Branch divergence

+ Occupancy rate
Hide long global memory latency

+ Zero-overhead warp scheduling

27-8-2018 OpenMP and OpenCL 25

Non-coalesced memory access of global memory
Example for warp with four work-items and chunk size = 4

local workitemid 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

GlobalmemorylIlllllllllllllll

27-8-2018 OpenMP and OpenCL 26

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 13

OpenMP and OpenCL

Coalesced memory access of global memory
Example for warp with four work-items and chunk size = 4

local workitemid 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

GlobalmemorylIlllllllllllllll

27-8-2018 OpenMP and OpenCL 27

Bank conflicts in accessing local memory

In order to access fast local memory

+ Divided in banks

* Dedicated channels

» Successive N words are assigned to successive banks

27-8-2018 OpenMP and OpenCL 28

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

14

OpenMP and OpenCL

Bank conflicts in accessing local memory

® No bank conflicts

® Linear addressing

stride ==

Thread 0
Thread 1
Thread 2

[|

[S
Thread 3

| S|

[

- |

Thread 4
Thread 5

Thread 6
Thread 7 NN

Thread 15

Bank 15 |

® No bank conflicts

® Random 1:1 permutation

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

After CUDA Tutorial, NVIDIA, 2008

27-8-2018 OpenMP and OpenCL

29

Bank conflicts in accessing local memory

® 2.way bank conflicts

® Linear addressing
stride ==

Thread 0
Thread 1

Thread 2 ‘
Thread 3 v"

Thread 4 "‘

Thread 8 7\
Thread 9
Thread 10
Thread 11

® 38-way bank conflicts

® Linear addressing
stride ==

Thread 0

Thread 1 7
Thread 2 ;¢

Thread 3 4

Thread 4

Thread 5

Thread 6

Thread 7

Thread 15

After CUDA Tutorial, NVIDIA, 2008

27-8-2018 OpenMP and OpenCL

30

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

15

OpenMP and OpenCL

27-Aug-18

2011 2012

Physical Optimized
Integration Platforms

GPU Compute
C++ Support

Integrate CPU and
GPU in Silicon

Unified Memory User Mode
Controller Scheduling

Common Bi-Directional Power
Manufacturing Mgmt Between CPU
Technology and GPU

5 | The Programmer’s Guide to a Universe of Possibility | June 12, 2012

27-8-2018

HSA Roadmap
HETEROGENEOUS SYSTEM ARCHITECTURE ROADMAP

2013

Architectural
Integration

Unified Address
Space for CPU
and GPU

GPU Uses Pageable
System Memory via
CPU Pointers

Fully Coherent
Memory Between
CPU & GPU

After P. Rogers, AMD 2012

OpenMP and OpenCL

System
Integration

GPU Compute
Context Switch

GPU Graphics
Preemption

Quality of Service

u 2
AMDZ | DEVELOPER SUMMIT

31

T, = execution time with one core
Ty = execution time with N cores
Speedup factor = T,/ Ty

S+P 1

Speedup factor

P = time spent in the fraction of the program that can be parallelized
S = time spent in the serial fraction

1

Speedl [}?4 mdahl — =

27-8-2018

S+P/N (1-P)+P/N

Example: if 80% of the code can be parallelized then the speedup <=5

OpenMP and OpenCL

S+(1-S)/N

32

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

16

OpenMP and OpenCL

Amdahl’s law: speedup for 1024 cores

SPEEDUP

1=3'24}(‘

31x 24x

1%

0 0.01 0.02 003 0.04
SERIAL FRACTION, s

After: Gustafson, Montry and Benner, 1988

27-8-2018 OpenMP and OpenCL 33

Gustafson’s law

* More processors and memory: many problems are scaled with N
+ Problem is scaled: in many cases S decreases

+ Amdahl’s law: how fast a given serial program would run on a
parallel system

+ Gustafson’s law: how long a given parallel program would run on
a sequential processor

S+P*N
Speedup Gustafson = ﬁ = N - (N - 1) * S
27-8-2018 OpenMP and OpenCL 34

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

17

OpenMP and OpenCL

Gustafson’s law: speedup for 1024 cores

SPEEDUP
1 El24><‘ 1014 1004x% 993x GEAx
1% L : : -
o 0.01 0.02 0.03 0.04

SERIAL FRACTION, s

After: Gustafson, Montry and Benner, 1988

27-8-2018 OpenMP and OpenCL 35

Heterogeneous architecture

Heterogeneous = combination of CPU and GPU
Example:

* 10% of code can not be parallelized
* 1 core needs 10 times as many resources to be 2 x faster

+ Speedup,ngan With 100 simple cores
1/(0.1 +0.9/100) = 9.2

+ Speedup,mgan With 90 simple cores and one 2 x faster core
1/(0.1/2 + 0.9/90) = 16.7

After Asanovic et al., 2006

27-8-2018 OpenMP and OpenCL 36

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

18

OpenMP and OpenCL

Mu

Survey (2013) of 22 standards for parallel programming

Iti-core CPU:

Array Building Blocks
C++11 Threads

Cilk Plus

MCAPI

MPI

OpenMP

Parallel Building Blocks
Parallel Patterns Library
Posix Threads

PVM

Thread Building Blocks

GPU and heterogeneous programming:

Accelerator
CUDA

C++ AMP

Direct Compute
HMPP Workbench
Liquid Metal
OpenACC
OpenCL

PGl Accelerator
SaC

Shader languages

27-8-2018 OpenMP and OpenCL 37
Choice of standard for multi-core CPU programming
Requirement Industry Maturity Acceptance by Future Vendor Portability Scalable to Vector Effort for
———————— standard market developments independence ccNUMA capabilities conversion
Standard (optional) (optional)
Array Building No Beta New, Good Poor Poor No Yes Huge
Blocks not ranked
Ca+11 Yes Partly new New, Good Good Good No No Huge
Threads not ranked
Cilk Plus No Good Rank 6 Good Reasonable Reasonable No Yes Low
No MSVC
MCAPI No Poor Not ranked Unknown Good Good Yes No Huge
MPI Yes Excellent Rank 7 Good Good Good Yes No Huge
OpenMP Yes Excellent Rank 1 Good Good Good Yes, No Low
only GNU
Parallel
Patterns No Reasonable New, Good Poor Poor No No Huge
Library not ranked Only MSVC
Posix Threads Yes Excellent Not ranked Poor Good Good No No Huge
Thread
Building No Good Rank 3 Good Reasonable Reasonable No No Huge
Blocks
27-8-2018 OpenMP and OpenCL 38

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

19

OpenMP and OpenCL

Requirement Industry Maturity Acceptance by Future

------------ - standard market developments familiarization

Standard time

C++ AMP No New Not ranked Unknown Medium

CUDA No Excellent Rank 5 Good High

Direct No Poor Not ranked Unknown High

Compute

HMPP No Poor Not ranked Plan for open Medium
standard

OpenCL Yes Good Rank 2 Good High

PGI

Accelerator No Reasonable Not ranked Unknown Medium

27-8-2018

vendor vendor

independence independence

Choice of standard for GPU programming

Bad Bad
Reasonable Reasonable
Bad Bad
Reasonable Bad

Good Good

Bad Bad

OpenMP and OpenCL

Portability Heterogeneous

Poor No
Bad No
Bad No
Good Yes
Good Yes
Bad No

39

DEVELOPERS PREFER OPEN STANDARDS!

June 2011 developer survey
shows inevitable success and
adoption of OpenCL

Respondents ranked most

popular APIs for Multi-Threaded
Development

OpenCL ALREADY #2 in N.A,,
#3 in EMEA

n | June 2011

7 | AMD Fusion Developer Summit | June 14, 2011

27-8-2018

Acceptance by market

|APIs for Current Multi-Threaded Development

The most popular multi-threaded development APT used by developer.
survey is OpenMP (Open Multi-Processing), which supports multi-platform s:
memory multiprocessing programming i C, C+

curently used by 31% of respondents.
fra fo

follows at 28%. Another 25%

library that leverages Ir

Oper

nd FORTRAN. OpenMP
pen Computing Language),
s various sor platforr
3 C++ templ

Which of the following do you program with
today?

Percentof | Percent of
Cases

OpenMP

OpenCL

Intel Threading Bulding Biocks

Intel Parallel Building Blocks

CUDA

Intel Cilk Plus

WP

Co Aray Fortran

Other

Total Responses

After R, Bergman, AMD 2011

OpenMP and OpenCL

n

AMD | DEVELOPER SUMMIT

40

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

20

OpenMP and OpenCL 27-Aug-18

New developments

CUDA less vendor/platform specific, but no industry standard
+ Visual Studio C++ AMP, great tool but vendor specific

+ Enhancement OpenCL kernel language, C++ like features like
classes and templates

+ Altera Corporation OpenCL program for FPGAs

* OpenACC announced and products available

+ OpenMP 4.0 with “directives for attached accelerators”
Portable OpenMP pragma style programming on multi-core CPUs and GPUs, utilize
vector capabilities of CPUs and GPUs

27-8-2018 OpenMP and OpenCL 41

Classification of low level image operators

Classification by Nicolescu and Jonker (2001) and Kiran, Anoop
and Kumar (2011)

Class ___________ |Example |

Point operator Threshold
Global operator Histogram
Local neighbour operator Convolution
Connectivity based operator Label Blobs

27-8-2018 OpenMP and OpenCL 42

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 21

OpenMP and OpenCL

Parallelizing a large generic computer vision library

Idea to parallelize large part of the library:

+ One instance of each low level class is implemented and can
be used as skeleton to implement other instances of class

* Many high level operators are built on the low level operators

Other operators are special and need will need a dedicated
approach to parallelizing

27-8-2018 OpenMP and OpenCL

43

OpenMP

* Introduction

+ Components

* Scheduling strategy *
* Memory model *

+ Examples

See for standard: www.openmp.org

27-8-2018 OpenMP and OpenCL

44

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

22

OpenMP and OpenCL

OpenMP introduction

+ An API that supports multi-platform shared memory
multiprocessing programming in C, C++ and Fortran

» Supports both data parallel and task parallel multiprocessing
+ Fork-join programming model

J J
(0] 0
— — —
master I I
thread N N
After Introduction to Parallel Computing, Barney, 2011
27-8-2018 OpenMP and OpenCL 45

OpenMP example adding two vectors

const int SIZE = 1000;
double a[SIZE], b[SIZE], c[SIZE];
// code for initialising array b and c
#pragma omp parallel for
for (int j = 0; j < SIZE; j++) {
a[jl = b[3] + c[]l;
} // for j

Assuming CPU has four cores, at executing time the next events will
happen:
+ The master thread forks a team of three threads
« All four threads will execute in parallel one quarter of the for loop. The
first thread will execute the for loop for 0 <= j < 250, the second thread
will execute the for loop for
250 <= j < 500, etc
* When all threads have completed their work the threads will join

27-8-2018 Multi Core Processing in 46
VisionLab

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

23

OpenMP and OpenCL 27-Aug-18

OpenMP Components

OpenMP consists of three major components:
+ Compiler directives

* Runtime functions and variables

+ Environment variables

27-8-2018 OpenMP and OpenCL 47

OpenMP compiler directives

All compiler directives start with “#pragma omp”. There are
compiler directives for expressing the type of parallelism:

+ For loop directive for data parallelism
+ Parallel regions directive for task parallelism

» Single and master directives for sequential executing of code
in parallel constructs

There are also compiler directives for synchronisation primitives,
like:

+ Atomic variables

« Barriers

+ Critical sections

* Flushing (synchronizing) memory and caches between threads

27-8-2018 OpenMP and OpenCL 48

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 24

OpenMP and OpenCL 27-Aug-18

OpenMP runtime functions and variables

OpenMP has runtime functions for performing operations like:
+ Locking
* Querying and setting the number of threads to be used in
parallel regions

+ Time measurement
+ Setting the scheduling strategy

With environment variables it is possible to modify the default
behaviour of OpenMP, like:
+ Setting the maximal number of threads to be used in parallel
regions
+ Setting the stack size for the threads
+ Setting the scheduling strategy

27-8-2018 OpenMP and OpenCL 49

OpenMP scheduling strategy

+ Static: iterations are divided into chunks of size chunk_size,
and the chunks are assigned to the threads in the team in a
round-robin fashion in the order of the thread number.

+ Dynamic: iterations are distributed to threads in the team in
chunks as the threads request them. Each thread executes a
chunk of iterations, then requests another chunk, until no
chunks remain to be distributed .

+ Guided: iterations are assigned to threads in the team in
chunks as the executing threads request them. Each thread
executes a chunk of iterations, then requests another chunk,
until no chunks remain to be assigned. The size of the chunk
decreases each time.

« Auto: decision regarding scheduling is delegated to the
compiler and/or runtime system.

27-8-2018 OpenMP and OpenCL 50

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 25

OpenMP and OpenCL

OpenMP memory model

The OpenMP API provides a relaxed-consistency, shared-memory
model:
+ Each thread is allowed to have its own temporary view of the
memory. The memory model has relaxed-consistency because
a thread’s temporary view of memory is not required to be
consistent with memory at all times.

+ A flush operation enforces consistency between the temporary
view and memory.

The flush operation:
+ Can be specified using the flush directive
+ Is implied at:
+ A barrier region
+ At entry to and exit from parallel and critical region

27-8-2018 OpenMP and OpenCL 51

Sequential Threshold

template <class OrdImageT, class PixelT>
void Threshold (OrdImageT &image, const PixelT low, const PixelT high) {
PixelT *pixelTab = image.GetFirstPixelPtr();
const int nrPixels = image.GetNrPixels();
for (int i = 0; i < nrPixels; i++) {
pixelTab[i] = ((pixelTab[i] >= low) && (pixelTab[i] <= high))
? OrdImageT::0Object () : OrdImageT::BackGround();
} // for all pixels
} // Threshold

27-8-2018 OpenMP and OpenCL 52

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

26

OpenMP and OpenCL 27-Aug-18

OpenMP Threshold

template <class OrdImageT, class PixelT>
void Threshold (OrdImageT &image, const PixelT low, const PixelT high) {
PixelT *pixelTab = image.GetFirstPixelPtr();
int nrPixels = image.GetNrPixels();
#pragma omp parallel for
for (int i = 0; i < nrPixels; i++) {
pixelTab[i] = ((pixelTab[i] >= low) && (pixelTab[i] <= high))
? OrdImageT::0Object () : OrdImageT: :BackGround();
} // for all pixels
} // Threshold

27-8-2018 OpenMP and OpenCL 53

OpenMP Threshold speedup graph on i7 2600 (4 cores)

Th OpenMP XP L

Speedup

32 64 128 256 512 1024 2048 4096 8192
WidthHeight
27-8-2018 OpenMP and OpenCL 54

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 27

OpenMP and OpenCL

Sequential Histogram

template <class IntImageT>
void Histogram0 (const IntImageT &image, const int hisSize,
typedef typename IntImageT::PixelType PixelT;
memset (his, 0, hisSize * sizeof(int));
PixelT *pixelTab = image.GetFirstPixelPtr();
const int nrPixels = image.GetNrPixels();
for (int i = 0; i < nrPixels; i++) {
his[pixelTab[i]]++;
} // for i
} // HistogramO

int *his) {

27-8-2018 OpenMP and OpenCL 55
Parallel Histogram ??
template <class IntImageT>
void Histogram0 (const IntImageT &image, const int hisSize, int *his) {
typedef typename IntImageT::PixelType PixelT;
memset (his, 0, hisSize * sizeof(int));
PixelT *pixelTab = image.GetFirstPixelPtr();
const int nrPixels = image.GetNrPixels();
#pragma omp parallel for
for (int i = 0; i < nrPixels; i++) {
his[pixelTab[i]]++;
} // for i
} // Histogram0
27-8-2018 OpenMP and OpenCL 56

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

28

OpenMP and OpenCL

OpenMP Histogram

Pseudo code

+ Clear global histogram

+ Splitimage in N parts and do in parallel for each part
+ Create and clear local histogram
+ Calculate local histogram

« Add all local histograms to global histogram

27-8-2018 OpenMP and OpenCL 57

OpenMP Histogram

template <class IntImageT>
void Histogram0 (const IntImageT &image, const int hisSize, int *his) {
typedef typename IntImageT::PixelType PixelT;
memset (his, 0, hisSize * sizeof(int));
PixelT *pixelTab = image.GetFirstPixelPtr();
const int nrPixels = image.GetNrPixels();
#pragma omp parallel
{

int *localHis = new int[hisSize];

memset (localHis, 0, hisSize * sizeof(int));
#pragma omp for nowait

for (int i = 0; i < nrPixels; i++) {
localHis[pixelTab[i]]++;
} // for i
#pragma omp critical (CalcHistogram0)
{

for (int h = 0; h < hisSize; h++) {
his[h] += localHis[h];
} // for h
} // omp critical
delete [] localHis;
} // omp parallel
} // Histogram0O

27-8-2018 OpenMP and OpenCL 58

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

29

OpenMP and OpenCL

OpenMP Histogram speedup graph on i7 2600 (4 cores)

Histogram OpenMP XPS8300NHL speedup

i

@M awNa

Tt

i
&
24
14 o o s ;/'
o '.74‘*_(,{5
T T T T T T T T T
2 64 128 256 512 1024 2048 4096 8192
WidthHeight
27-8-2018 OpenMP and OpenCL 59

OpenMP Convolution speedup graph on i7 2600 (4 cores)

Conv3x3 OpenMP XPS8300NHL speedup

Speedup

T T
32 64 128 256 512 1024 2048 4096 8192

WidthHeight
27-8-2018 OpenMP and OpenCL 60

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

30

OpenMP and OpenCL 27-Aug-18

OpenMP LabelBlobs speedup graph on i7 2600 (4 cores)

LabelBlobs8 OpenMP Cells XPS8300NHL speedup

Speedup
N
1
a

32 64 128 256 512 1024 2048 4096 8192

‘WidthHeight

27-8-2018 OpenMP and OpenCL 61

OpenCL

* OpenCL architecture
+ Platform model
+ Execution model
* Memory model
* Programming model
+ Kernel language
* Host API
+ Examples
* Memory transfer *

See for standard: www.khronos.org/opencl

27-8-2018 OpenMP and OpenCL 62

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 31

OpenMP and OpenCL 27-Aug-18

OpenCL platform model

The model consists of a host connected to one or more OpenCL
devices. An OpenCL device is divided into one or more compute
units which are further divided into one or more processing

elements. Computations on a device occur within the processing

elements.
il
TLE@H /
Processing FLE_E_D_FM

Host
Element ﬂ_/
T

P

e :
Cornpute Unit Compute Device

~—

After The OpenCL Specification V1.1, A. Munshi, 2011

27-8-2018 OpenMP and OpenCL 63

OpenCL execution model

Execution of an OpenCL program occurs in two parts:
» Kernels that execute on one or more OpenCL devices
A host program that executes on the host

27-8-2018 OpenMP and OpenCL 64

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 32

OpenMP and OpenCL

OpenCL execution model

When the kernel is submitted to the compute device for
computation an indexing space is defined

27-8-2018 OpenMP and OpenCL

65

NDRange, Work-Groups and Wavefronts

NDRange Work-Group

Global Domain = Work-Group Id = (B, B,)
get_global_size (0)

Wavefront ~Wavefront | - Wavefront

1 2
(Work-Group| |Work-Group| |Work-Group
1 2

o(1)

Wavefront | | Wavefront | ~Wavefront

get_group_size(l)
<«———WorkGroupSize G, ——»

| Work-Group| Work-Group| |Work-Group)

get_glabal_siz

Wavefront | ~Wavefiont | ~Wavefront
n

<«——— Global Domain, ———>

'Wavk—Gvuup | Work-Group| |Work-Group|
.

Get_group_size (0]
<«———Work-Group Size G: ———>

Wavefront

IS Work-ltem Work-ltem

Wk =(0,0) oo WHa=(Gx-1,0)0
globalia= globalia =
(BG, B*Gy) (B*Ge+Ge1,B,Gy)

Work-ltem Work-Item
W-ls = (G1, Gy1)
** |gobali=

After AMD Accelerated Parallel Processing
OpenCL Programming GuideAMD, 2011

27-8-2018 OpenMP and OpenCL

66

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

33

OpenMP and OpenCL 27-Aug-18

OpenCL execution model

When the kernel is submitted to the compute device for
computation an indexing space is defined

An instance of the kernel, called work-item is created for each
index

+ Work-item has a unique global ID
+ Work-items are organized into work-groups

« All work-items of one work-group execute concurrently on the
processing elements of a single compute unit

+ Work-group has a unique work-group ID
+ Work-item has a unique local ID within a work-group

The indexing space is called NDRange (N-Dimensional Range)
OpenCL supports up to and including three dimensional indexing

27-8-2018 OpenMP and OpenCL 67

OpenCL execution model

The host program defines the context for the kernels and
manages their execution. The context includes:

+ Devices

+ Program objects (source and executables)

+ Memory objects (buffers, images, queues and events)
+ Kernels (OpenCL functions that run on devices)

The host places commands into the command-queue which are
then scheduled onto the devices within the context:

+ Kernel execution commands: execute a kernel on the
processing elements of a device

+ Memory commands: transfer data to, from, or between
memory objects

* Synchronization commands: constrain the order of execution
of commands

27-8-2018 OpenMP and OpenCL 68

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 34

OpenMP and OpenCL 27-Aug-18

OpenCL execution model

| Context |
$ ¢ (] ()
|Kernels| |Memory Objects| |command Queues|
&) 3

| dpimnll I

__kernel void — Buffers
‘dp_mul(global const loat a, p_mul

> glnh“:l constfioat b, argl0] value In

global float 'c) Order
{ dp_mul
Intid = get_global id(0); | L I T Queue
clid] = afid] * biid]; .
3 arg[2] value

GPU
. Create la & “
i y

After OpenCL A Standard platform for programming Heterogeneous parallel computers,
Mattson et al, 2009

27-8-2018 OpenMP and OpenCL 69

OpenCL memory model

Compute Device

Compute unit 7 Compute unit N
Private Private Private Private
memory 1 memory M memory 1 memory M
- - I - I
| PE1 | | PEm | [PE1] [pEM |

Local Local
memory 1 memory N

‘ Global/Censtant Memeory Data Cache ‘

\ Global Memory \

‘ Constant Memory ‘

Compute Device Memory

After The OpenCL Specification V1.1, A. Munshi, 2011

27-8-2018 OpenMP and OpenCL 70

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 35

OpenMP and OpenCL 27-Aug-18

OpenCL memory model

+ Global Memory: permits read/write access to all work-items in
all work-groups

+ Constant Memory: global memory initialized by host that
remains constant during the execution of a kernel

* Local Memory: memory local to a work-group, variables are
shared by all work-items in that work-group

+ Private Memory: memory private to a work-item

27-8-2018 OpenMP and OpenCL 71

OpenCL programming model

Programming models
» Supports data parallel and task parallel
« Primary model driving the design is data parallel

Synchronization
* In kernels

+ Work-items in a single work-group using a barrier

+ No mechanism for synchronization between work-groups
+ Using host API

+ Command-queue barrier, commands enqueued to
command-queue(s) in a single context

+ Using events

27-8-2018 OpenMP and OpenCL 72

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 36

OpenMP and OpenCL

OpenCL kernel language

Subset of ISO C99 with extensions

* No function pointers, recursion, bit fields, variable-length
arrays and standard C99 header files

« Extensions: vector types, synchronization, functions to work
with work-items/groups, etc

* Announced OpenCL 2.1: subset of C++14

Kernel for adding of two vectors:

kernel void VecAdd (global int* c, global int* a, global int* b) {
unsigned int n = get_global_id(0);
c[n] = a[n] + b[n];

27-8-2018 OpenMP and OpenCL 73

OpenCL Host API

For adding of two vectors (67 C statements, without error checking code)
* Allocate space for vectors and initialize
* Discover and initialize OpenCL platform

* Discover and initialize compute device

* Create a context

* Create a command queue

* Create device buffers

* Create and compile the program

* Create the kernel

* Set the kernel arguments

* Configure the NDRange

* Write host data to device buffers

* Enqueue the kernel for execution

* Read the output buffer back to the host

* Verify result

* Release OpenCL and host resources

27-8-2018 OpenMP and OpenCL 74

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

37

OpenMP and OpenCL

OpenCL Threshold kernel
One pixel or vector of pixels per kernel

kernel void Threshold (global ImageT* image, const PixelT low,
const PixelT high) {
const PixelT object = 1;
const PixelT background = 0;
const unsigned int i = get_global_id(0);
image[i] = ((image[i] >= low) && (image[i] <= high)) ?
object : background;
} // Threshold

“Poor man’s” template for Int16lmage:

+ ImageT = short, short4, short8 or short16
* PixelT = short

27-8-2018 OpenMP and OpenCL 75

OpenCL Threshold host side VisionLab script

CL_Init NVIDIA GPU

$contextId = CL_CreateContext 0 (0)

$qId = CL_CreateQueue $contextId 0 OutOfOrderDisabled ProfilingDisabled
$zrc = VarFromFile threshold.cl

$programId = CL_CreateProgram $contextId &$zrc

$bufld = CL_CreateBuffer $contextId ReadWrite ImageBuffer par
$options = "-DPixelT=short -DImageT=short"

CL_Build $programld &$options

CL_AddKernel $programld Threshold

CL_SetArg Threshold 0 Buffer $bufId

CL_SetArg Threshold 1 Short $low

CL_SetArg Threshold 2 Short $high

CL_WriteBuffer $qId $bufld par () () Wait

CL_Run $qId Threshold () ($nrPixels) () () () Wait
CL_ReadBuffer $qId $bufld par () () Wait

27-8-2018 OpenMP and OpenCL 76

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

38

OpenMP and OpenCL

OpenCL development in VisionLab

Visionlab V341 852012 (0) Van de Loosdrecht Machine Vision BV www.vdimv.ni
File Operator Camera Server Options Window OpenCL Userl User2 User3 Userd Help

Open =
e #® E:\Master\Presentations\Threshold.cl
New Script Search Line number Indentation
Close Al I _Find | Jumg] || +] -] c]
Select 2nd = = = = -
kernel void Threshold (global ImageT* image, const PixelT low, const PixelT high) { =
const PixelT object = 1;
const PixelT background = 0; ‘
const unsigned int i = get_global_id(0); |=
image[i] = ((image[i] >= low) && (image[i] <= high)) ? object : background; ‘
Setup } // Threshold t
Exit "
af I 3
Threshold —
Threshold lsoData ||| 4@ E:\Master\Presentations\Threshold,jis ol o =
Remove Blobs Internal script Search Line number Indentation
Remove Border Blobs. o || Store ||| | _Find | PR | WS e |
Label Blobs
Blob Analysis CL_Init NVIDIA GPU A
Grayscale Blob Analysis|| | |ScontextId = CL_CreateContext 0 (0)
“Removelabels ||| |$ald = CL_CreateQueue $contextId 0 OutOforderDisabled ProfilingDisabled
$zrc = VarFromFile threshold.cl
i $programId = CL_CreateProgram $contextId &S$zrc
SbufId = CL_CreateBuffer ScontextId ReadWrite ImageBuffer par
S Soptions DPixelT=short -DImageT=short"
And CL_Build $programId &Soptions
or CL_AddKernel $programld Threshold =
ExOr CL_SetArg Threshold 0 Buffer Sbufld
CL_SetArg Threshold 1 Short $low
Convolution CL_SetArg Threshold 2 Short Shigh
ROI CL_WriteBuffer $qId $bufId par () () Wait
Sobel CL_Run $qId Threshold () ($nrPixels) () () () Wait
Er CL_ReadBuffer $qId $bufld par () () Wait J
Dilation 7 5
Opening
Closing [~ Protected Continue Single step Step into Reset

File Operator Camera

- Visionlab V341 8-5-2012

OpenCL development in VisionLab

Server Options Window

open

Remove Blobs
Remove Border Blobs

Save - "
Search
New Script
Close All
et kernel void Thresho
const PixelT obj
const PixelT bac!
const unsigned i
image(i] = ((ima
Setup } // Threshold
Exit
<
Threshold 5
Threshold IsoData 7 L
Intemal script

name

CLInit
CL Free

CLAddKernel

CL Build

CL CreateBuffer

CL CreateContext

CL CreateEvent

CL Createlmage2D

CL CreateProgram

CL CreateProgramWithBinary
CL CreateQueue

CL Finish

CL Flush

CL_GetDevicelnfo
CL_GetDevices

CL_GetKe uplnfo

(0) Van de Loosdrecht Machine Vision BY www.vdimv.nl
Userl User2 User3 Userd Help

Line number Indentation
dumg || +] -] e

Bt PixelT low, const PixelT high) { =

high)) 2 object : background; ‘

[E=8N=R =
Line number Indentation

bl jemara | | o e

Label Blobs =
Blob Analysis CL_Init NVIDIA GPU CL_GetPlatforminfo -
Grayscale Blob Analysis|| | $CONtexXtId = CL Creq ¢ Getplatforms .
Removelabes]||$91d = ChCreateguey oo o bled ProfilingDisabled
Szrc = VarFromFile
Sprogramtd = cL Crei CLUnPinimage
Aad Sbufld = CL CreateB| CLReadBuffer geBuffer par
SiEEl $options = "-Dixell CL Readlmage2D
And CL_Build $programId| ¢ pun
or CL_AddKernel Sprogr
EOr CL Setarg Thrzghogd LT
CL_SetArg Threshold| CLSetArg
ConioRition CL_Sethrg Threshold| CLSupportDoubles
ROl CL_WriteBuffer $qId CL_WaitForEvent
Sovel CL_Run $qTd Threshol | waitrorkvents it
Erosion CL_ReadBuffer 3qId CL WriteBuffer L
Diation 0 CL Writelmage2D ;
Opening
Closing _Abort Crir+Y_| [~ Protected Continue | _Single step Step into Resst

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

39

OpenMP and OpenCL

One pixel or vector of pixels

OpenCL Threshold GPU speedup graph (GTX 560 Ti)

per kernel

Threshold OpenCL XPS8300NHL NVIDIA GPU Int16 speedup

19 - o’
18 - Image
17" Shens iy
|-~ Short8 s
16 -~ Short16 o
15 - 27
14 ,//
13 o’
¢
12 4 7
i -
1 7 g
S 104 /¥
g il ,’,
8 | !
74 P
6 //_
5 //,
4
4 — F 4
2z
3 i
2 - e ®
14 o o o—e8 "5 6 60— o
0 e——o—"%"
T T T T T T T T T
32 64 128 256 512 1024 2048 4096 8192
HeightWidth
27-8-2018 OpenMP and OpenCL 79
OpenCL Threshold CPU speedup graph (i7 2600)
One pixel or vector of pixels per kernel
Th OpenCL XP iL AMD CPU Int16 speedup
14 o—0—0—"-09——-0——0——0———0——0
Operator
§ T3
3 Shon el
8 Shor v Sy
7~ Short16 =
AR
g o ° ¢ Om=mspmo
o
2
0
T T T T T T T T T
32 64 128 256 512 1024 2048 4096 8192
HeightWidth
27-8-2018 OpenMP and OpenCL 80

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

40

OpenMP and OpenCL 27-Aug-18

OpenCL Threshold kernel
Chunk of pixels or vectors of pixels per kernel

kernel void ThresholdChunk (
global ImageT* image,
const PixelT low, const PixelT high,
const unsigned int size) {
const PixelT object = 1;
const PixelT background = 0;
unsigned int i = get_global_id(0) * size;
const unsigned int last = i + size;
for (; i < last; i++) {
image[i] = ((image[i] >= low) && (image[i] <= high)) ?
object : background;
} // for i
} // ThresholdChunck

27-8-2018 OpenMP and OpenCL 81

Non-coalesced memory access of global memory
Example for warp with four work-items and chunk size = 4

local workitemid 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

GlobalmemorylIlllllllllllllll

27-8-2018 OpenMP and OpenCL 82

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 41

OpenMP and OpenCL

Coalesced memory access of global memory
Example for warp with four work-items and chunk size = 4

local workitemid 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

GlobalmemorylIlllllllllllllll

27-8-2018 OpenMP and OpenCL 83

OpenCL Threshold kernel
One pixel or vector of pixels per kernel with coalesced access

kernel void ThresholdCoalChunk (global ImageT* image,
const PixelT low, const PixelT high,
const unsigned int size) {
const PixelT object = 1;
const PixelT background = 0;
const unsigned int gid = get_group_id(0);
const unsigned int 1lid = get_local_id(0);
const unsigned int ws = get_local_size(0);
unsigned int i = (gid * ws * size) + 1lid;
const unsigned int last = i + size * ws;
for (; i < last; i += ws) {
image[i] = ((image[i] >= low) && (image[i] <= high)) ?
object : background;
} // for i
} // ThresholdCoalChunk

27-8-2018 OpenMP and OpenCL 84

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

42

OpenMP and OpenCL 27-Aug-18

OpenCL Threshold GPU speedup graph (GTX 560 Ti)
Chunk of pixels or vectors of pixels per kernel

Threshold OpenCL Chunk XPS8300NHL NVIDIA GPU Int16 2048x2048 speedup

15

14 - g—"— ¢

T ”%g%m

13 P ..
124 e - VTR '
Mo -

@ @ & @ @ ®.
9 *
®
S s
g 2+
6 -
5 @
4 Operator
= s«
3 Short
Short4
2+ Short8
Short16
1 <o o0 ———0——0——Q———-—9—0Q
I—8— Short4Coal
0 % Short16Coal

2 4 8 16 32 64 128 256
ChunkSize
27-8-2018 OpenMP and OpenCL 85

OpenCL Threshold CPU speedup graph (i7 2600)
Chunk of pixels or vectors of pixels per kernel
Threshold OpenCL Chunk XPS8300NHL AMD CPU Int16 2048x2048 speedup

5]
& ‘i_ .
. .
Tg.
4+ \; X
\E
3]
3
&
-
1i4{ o—mo0—0——0——0—"+0—1-0 °
0+ ® :L. —————— ®
BIIQZ 16;84 32“!68 65;36 131‘072 262‘144 524‘238 104&‘1576
ChunkSize
27-8-2018 OpenMP and OpenCL 86

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 43

OpenMP and OpenCL

Threshold OpenMP versus OpenCL

‘Threshold OpenCL XPSSI0ONHL NVIDIA GPU Int16 speedup

Threshold OpenMP XPSSI0ONHL speecup.

@ w2 sz e 2e aw e
i recrena

‘Threshold OpenCL Chunk XPSSI0ONHL AMD CPU Int16 2048x2048 speedup

ert

Speatip

27-8-2018 OpenMP and OpenCL

87

Device architecture (OpenCL)

Compute Device
Compute unit 7 Compute unit &

Private

Private
memory

memory 7

Private
memory M

Private
memory 1

| pEr | | Pem | [PE1 | [pEm |

Local Local
memory 7 memory N

| Global/Constant Memory Data Cache ‘

\ Global Memory \

‘ Constant Memory ‘

Compute Device Memory

After The OpenCL Specification V1.1, A. Munshi, 2011

27-8-2018 OpenMP and OpenCL

88

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

44

OpenMP and OpenCL

OpenCL Histogram
Input image Computing local histograms in local Local histograms in global
memery memary
| Bm N
Input data

Final reduced histogram

W i [
Local histogram bins
Local histegram bins .—r—
= o —
Lacal histogram bins
After Gaster et al., 2012, chapter 9
27-8-2018 OpenMP and OpenCL 89
OpenCL Histogram kernel (part 1)
kernel void HistogramKernel (const global short *image,
const uint nrPixels, const uint hisSize,
local int *localHis, global int *histogram)
const uint globalld = get_global_id(0);
const uint localld = get_local id(0);
const uint localSize = get_local_size(0);
const uint groupId = get_group_id(0);
const uint numGroups = get_num_groups (0);
// clear localHis
const uint maxThreads = MIN (hisSize, localSize);
const uint binsPerThread = hisSize / maxThreads;
uint i, idx;
if (locallId < maxThreads) {
for (i = 0, idx = localld; i < binsPerThread;
i++, idx += maxThreads) {
localHis[idx] = 0;
}
}
barrier (CLK_LOCAL_MEM FENCE) ;
27-8-2018 OpenMP and OpenCL 90

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

45

OpenMP and OpenCL

OpenCL Histogram kernel (part 2)

// calculate local histogram
const uint pixelsPerGroup = nrPixels / numGroups;
const uint pixelsPerThread = pixelsPerGroup / localSize;
const uint stride = localSize;
for (i = 0, idx = (groupIld * pixelsPerGroup) + localld;
i < pixelsPerThread; i++, idx += stride) {
(void) atom_inc (&localHis[image[idx]]);
}
barrier (CLK_LOCAL_MEM FENCE) ;
// copy local histogram to global
if (locallId < maxThreads) {
for (i = 0, idx = localld; i < binsPerThread;
i++, idx += maxThreads) {
histogram[(groupId * hisSize) + idx] = localHis[idx];

}
} // HistogramKernel

27-8-2018 OpenMP and OpenCL 91
OpenCL Histogram Reduce kernel
kernel void ReduceKernel (const uint nrSubHis, const uint hisSize,
global int *histogram) {
const uint gid = get_global_id(0);
int bin = 0;
for (uint i=0; i < nrSubHis; i++)
bin += histogram[(i * hisSize) + gid];
histogram[gid] = bin;
} // ReduceKernel
27-8-2018 OpenMP and OpenCL 92

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

46

OpenMP and OpenCL

OpenCL Histogram speedup graph(GTX 560 Ti)

gram OpenCL XF NVIDIA GPU Int16 speedup
aq oo
Short
Short4
Short8
|-©- Short16
3
14{ o——0—0——0,%4——0——0———0———0
.;'x'v
//"
_,»—*"'.
e adl
0 @
T T T T T T T T
64 128 256 512 1024 2048 4096 8192
HeightWidth
27-8-2018 OpenMP and OpenCL 93
OpenCL Histogram speedup graph(i7 2600)
Histogram OpenCL XPS8300NHL AMD CPU Int16 speedup
14 ¢ o o
R
Operator /9/”‘..
£ e~ Seq Pt
¥ Shora L
& - Shorta LT
- Shortig o
/@
2
v
/'®’
'
//
et
=
e
.
0
T T T T T T T T
64 128 256 512 1024 2048 4096 8192
HeightWidth
27-8-2018 OpenMP and OpenCL 94

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

47

OpenMP and OpenCL

OpenCL Histogram GPU speedup graph (GTX 560 Ti)

27-8-2018

Using multiple local histogram per work-group

HistogramNL OpenCL XPS8300NHL NVIDIA GPU Int16 2048x2048 speedup

Operator
IS Wi
Short
Shortd
-5 Shortd %
7 —-%- Shortis :
®
S emho——n &)
6 S
i
e
o
e
5 2
5
¥
£ ¥
P
RS :
& 4
P
3 Pt
PP
2§77
14 o
0
T T T T T T
1 2 4 8 16 2
nriocalHis
OpenMP and OpenCL 95

OpenCL Histogram GPU speedup graph (GTX 560 Ti)

27-8-2018

with 16 local histograms

Histogram16L OpenCL XPS8300NHL NVIDIA GPU Int16 speedup

Speedup
.

o

—_—

0 g——u—

T T T T T T T T
64 128 256 512 1024 2048 4096 8192

HeightWidth

OpenMP and OpenCL 96

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

48

OpenMP and OpenCL 27-Aug-18

OpenCL Histogram GPU speedup graph (GTX 560 Ti)
1 local histogram per work-group versus 16

Histogram OpenCL XPSE300NHL NVIDIA GPU Int16 speedup Histogram16L OpenCL XPS8300NHL NVIDIA GPU Int16 speedup

E 2+ 3 3
j S i
6 4
5 7
i
1 4 &
3 >
24 F
.&"J
rarurara 19 s
o ® ol am——u——*
64 128 256 512 1024 2048 4096 8192 r T i T T r T T
o s 26 st e 2o a0 w2
Heightwidn
Heigntian
27-8-2018 OpenMP and OpenCL 97

Optimized implementation for CPUs

+ Each workgroup has only one work-item
* Number of workgroups is equal to the number of cores

* No race conditions for the local histogram, so no need for
expensive atomic increment operations

27-8-2018 OpenMP and OpenCL 98

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl 49

OpenMP and OpenCL

OpenCL Histogram optimized for CPU (i7 2600)

HistogramCPU OpenCL XPS8300NHL AMD CPU Int16 speedup

1
[
T
34 Hx Tral
e B A
s el
A
i
I
;
Operator Lo
o e Seq L
7
LR R o £
g - Shortd /"
|- Short1a &
o
i
i
i
I4
14 o o = °
L~
LA
%
g
&
e @
o
T T T T T T T T
64 128 256 512 1024 2048 4096 8192
HeightWidth
27-8-2018 OpenMP and OpenCL 99

Histogram OpenCL versus OpenMP

Histogram16L OpenCL XPS8300NHL NVIDIA GPU Int16 speedup Histogram OpenMP XPSS300NHL speedup

Speecip
Speecs

HistogramCPU OpenCL XPSS300NHL AMD CPU Int16 speedup

HistogramCPU OpenCL XPS8300NHL AMD CPU Int16 best work group
3
HeightWidth Seq Short Short4 Short8 Short16
64 1 1 1 1
i 2 128 1 1 1 1 1
256 1 1 1 1 1
512 1 2 2 4 2
Y 1024 1 4 8 8 8
2048 1 8 8 8 8
4096 1 8 8 8 8
° 8192 1 4 4 4 4
o 2 2 sz oM 2 ame e
Hogntman

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

50

OpenMP and OpenCL

OpenCL Convolution GPU speedup graph (GTX 560 Ti)
ConvLocal3x3 V4 OpenCL XPS8300NHL NVIDIA GPU Int16 speedup
_ Operator

[l oy
21 5. Locattnravz
20
19 o
18 o
17 H
16 -
15
14 -

S 134

E 12
1+
10 +
9
8
74
6
5
4 2
3 &
24 .
14 ¢ o— 06— 06— 06— 0—0—0
0

6‘4 1;8 2;6 512 10‘24 ZC:JB 40‘96 81I92
HeightWidth
27-8-2018 OpenMP and OpenCL 101

OpenCL Convolution GPU speedup graph (GTX 560 Ti)
ConvLocal15x15 V8 OpenCL XPS8300NHL NVIDIA GPU Int16 speedup
oo | ol -0
P B veeryisier

E
E
e
& %3

E-‘ot 1;8 2;6 51‘2 10‘24 20‘48 40‘96 BIIQZ

HeightWidth
27-8-2018 OpenMP and OpenCL 102

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

51

OpenMP and OpenCL

Speedup

0 52 121 198 275 352 429 506 583 660 737 814 891 968

Convolution speedup

Operator

—— CPU
GPU_oud
+ GPU_nieuw
+
+
+
+

& ° o o o

T T T T T

256 512 1024 2048 4096 8192

HeightWidth

Convolution 9x9: AMD FX9590 CPU (1 core) vs AMD R9 290X GPU

OpenCL LabelBlobs GPU speedup graph (GTX 560 Ti)

27-8-2018

LabelBlobs8 OpenCL Cells XPS8300NHL NVIDIA GPU Int32 speedup

4 Operator
[~ Seq
Kalentev_et_al
Optimized
Optimizedd
a
8
g
3 24
8
14 o o o =] ~o o o o
x
0o+
T T T T T T T T
64 128 256 512 1024 2048 4096 8192

HeightWidth

OpenMP and OpenCL

104

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

52

OpenMP and OpenCL

Memory transfer

Memory transfers:
* Normal

* Pinned
» Zero copy (not available for testing)

Data transfers benchmarked:
 From CPU to GPU
 From GPU to CPU

27-8-2018 OpenMP and OpenCL 105
Data transfer from CPU to GPU (GTX 560 Ti)
Host2Device OpenCL XPS8300NHL NVIDIA GPU Int16 speedup
24 Opeu:
+
o
S Y
»
o

. 7 O S VR
5 .

+ +

0
3‘2 Sld 1;8 25‘»6 5;2 1024 20‘48 4096 81'92
HeightWidth
27-8-2018 OpenMP and OpenCL 106

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

53

OpenMP and OpenCL

Data transfer from GPU to CPU (GTX 560 Ti)

Speedup

{ost OpenCL XF NVIDIA GPU Int16 speedup
2 Operator
|~ Normal_Write
Pinned_Write
+ Pinned_ReadWrite
*
Y - +
&
"
& 7
.
14{ 0——0——0——0——0——0——0—0—0
0
T T T T T T T T T
2 64 128 256 512 1024 2048 4096 8192
HeightWidth

27-8-2018 OpenMP and OpenCL 107
Overhead data transfer (in ms) is massive
for simple vision operators
Host2Device OpenCL XPS8300NHL NVIDIA GPU Int16 median
HeightWidth Normal_Read Pinned_Read Pinned_ReadWrite

32 26 33 33

64 26 33 33

128 33 37 37

256 68 53 53

512 179 131 131

1024 556 368 367

2048 1994 1329 1330

4096 8132 5146 5145

8192 34024 20298 20284

Threshold OpenCL XPS8300NHL NVIDIA GPU Int16 median
HeightWidth Seq Image Short Short4 Short8 Short16
32 2 48 M M M M
64 7 47 M M1 M1 42
128 18 67 40 40 41 41
256 57 54 43 43 43 46
512 202 125 92 91 92 97
1024 802 243 118 100 110 143
2048 3018 703 292 231 231 292
4096 11136 2586 921 666 715 1024
8192 43201 10110 3364 2354 2471 3790
27-8-2018 OpenMP and OpenCL 108

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

54

OpenMP and OpenCL

Evaluation choice for OpenMP

OpenMP is very well suited for parallelizing many algorithms of a
library in an economical way and execute them with an adequate
speedup on multiple parallel CPU platforms

+ OpenMP easy to learn

* Mature and stable tools

+ Very low effort embarrassingly parallel algorithms
+ 170 operators parallelized

« Automatic operator parallelization

+ Portability tested on quad core ARM running Linux

27-8-2018 OpenMP and OpenCL 109

Evaluation choice for OpenCL

OpenCL is not very well suitable for parallelizing all algorithms of
a whole library in an economical way and execute them effective
on multiple platforms

+ Difficult to learn, new mindset needed
+ Tools are “in development”
+ Considerable effort embarrassingly parallel algorithms

* Non embarrassingly parallel algorithms need complete new
approaches

« Overhead host — device data transfer

+ Considerable speedups possible

+ Exploitation vector capabilities CPUs / GPUs
+ Heterogeneous computing

+ Portable but the performance is not portable

27-8-2018 OpenMP and OpenCL 110

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

55

OpenMP and OpenCL

Standard for GPU and heterogeneous programming

There is at the moment NO suitable standard for parallelizing all
algorithms of a whole library in an economical way and execute
them effective on multiple platforms

OpenCL is still the best choice in this domain

27-8-2018 OpenMP and OpenCL

11

Recommendations OpenCL

+ Considerable amount effort writing and optimizing code
+ Algorithms are computational expensive

+ Overhead data transfer must be relative small compared to
execution time of kernels

» Code optimized for one device or sub optimal speedup
acceptable if run on different similar devices

27-8-2018 OpenMP and OpenCL

Use for accelerating dedicated algorithms on specific platforms:

112

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

56

OpenMP and OpenCL

27-8-2018

Future work

New development in standards
+ C++ AMP
+ OpenMP 4.0

Near future
« Parallelize more vision operators

More distant future

* Intelligent buffer management

+ Automatic tuning of parameters
+ Heterogeneous computing

OpenMP and OpenCL

113

27-8-2018

Summary and conclusions

Choice made for standards OpenMP and OpenCL
Integration OpenMP and OpenCL in VisionLab
Benchmark environment

OpenMP

+ Embarrassingly parallel algorithms are easy to convert
with adequate speedup

* More than 170 operators parallelized
* Run time prediction implemented
OpenCL
* “Not an easy road”
+ Considerable speedups possible
» Scripting host side code accelerates development time
+ Portable functionality
+ Portable performance is not easy

OpenMP and OpenCL

114

Jaap van de Loosdrecht, VALMV, jaap@vdimv.nl

27-Aug-18

57

